Adaptation of DOL Regression Model for Local Negotiations

WIOA Negotiations

- Factors to be Considered in State Negotiations
 - Characteristics of those Served (Casemix)
 - Economic Conditions
 - National Targets
 - Continuous Improvement / Return on Investment
 - Targets of Other States
- Local Factors: Casemix & Economic Conditions
- Casemix & Economic Conditions to Be Addressed Thru Statistical Model
- Statistical Models require LOTS OF DATA to create
 - Historic results under the new Measures
 - Participant Casemix of those included in results
 - Economic Conditions relevant to the results

WIA vs WIOA

- In some ways, WIA & WIOA are very similar regarding Accountability:
 - Measures for Employment & Earnings & Credentials
- Similar is not the Same
 - Entered Employment not the same as Employed Q2
 - Unemployed at Date of Participation vs All Exiters
 - Q1 vs Q2
 - Retention not the same as Employed Q4
 - Q2-3 only mattered if Employed Q1
- Periods of Participation Extended by Self-Service
- What was purpose of capturing Demographics under WIA? Did Boards really understand it?
- Why does this matter? MODELING

Model Development & Strengths

- DOL had 10+ years of Title I Adult/DW/Youth Data
- Able to develop usable models except for
 - Median Earnings Q2 Post-Exit (Youth)
 - Measurable Skills Gains (Adult & DW & Youth)
- Great Statistical Technique
 - Tons of Data Elements that went WAY beyond model attempts under WIA
 - Recognition that Regression Models estimate “Average Effects” but that there are differences they can’t account for
 - Drop in Movie Ticket Sales hurts California more than Texas
 - Rise in Oil Prices helps North Dakota more than Maine
 - ESL has lesser impact in Texas than Michigan
- Fixed Effects Model provided 2 predictions
 - Target (what an “Average State” should achieve)
 - Predicted (what “Your State” should achieve)
Model Development & Weaknesses

- Great Statistical Technique but some limitations
 - Credential Definition Changed after Models were Developed
 - Historic Data based Exit on ANY Qualifying Service
 - if Self-Service extended Exit into next Quarter, WIASRD didn’t focus on the “WIOA” quarters
 - Texas data showed upwards of 8-9% of Title I exits occurred 1-4 quarters LATER than exits using WIOA standards
 - Supplemental Records usually gathered “when it counted”
 - Maybe Participant Characteristics were not fully captured?
 - Models included FEDES which is no longer available

- Data Limitations introduce Noise
- Fixed Effects Modeling hard for 50 States, PR & DC
 - Order of Magnitude Harder for nearly 600 WIBs
 - Tourism much bigger impact on Orlando FL than El Paso TX
 - Urban-Rural Characteristics not accounted for

Original Models vs Actual Results

- 11 Measures to Negotiate
 - DOL Models were within 10% of Texas’ Actual Results
 - 10 out of 11 using the “Targets” (missed Adult Credential)
 - 8 out of 11 using the “Predictions” (Missed Adult & DW Credential & Adult Earnings)
 - DOL Models not as consistent at Board Level
 - “Targets” within 10% of Actuals 23.4% of the time
 - 72 of 308 Instances (28 Boards x 11 Measures)
 - “Predictions” within 10% of Actuals 19.5% of the time
 - 60 of 308 Instances
 - In some instances model went >100% and <0%
 - Lack of Fixed Effects, Quality of Local Data, “Small N” Problem

- What does this mean for Local Negotiations?
 - Aren’t they supposed to use these models?

Key Local Negotiation Provisions

- WIOA Statute §116(c)(3) on Local Negotiations:
 - Make adjustments for the expected economic conditions and the expected characteristics of participants to be served in the local area, using the statistical adjustment model developed pursuant to subsection (b)(3)(A)(viii)

- WIOA Regulation §677.210 on Local Negotiations:
 a) The objective statistical adjustment model . . . must be . . . used in order to reach agreement on local negotiated levels of performance for the upcoming program year
 b) The negotiations will include a discussion of circumstances not accounted for in the model and will take into account the extent to which the levels promote continuous improvement

- TEGL 9-17 says the Statistical Model is a Tool to be used in Negotiations and that States are to USE the model and ADAPT it to OUR Needs at the local level

In Summary

- Models developed based on Historic Data that was not perfectly aligned to purpose
 - Some Differences in Exit Quarters
 - Different Incentives for Documenting Characteristics & Employment
 - Credential Models Developed under proposed measure definition, not the final definition

- Models are not optimized for each Board
- Models may not account for all relevant factors
- Models are Tools and Must be Adapted to OUR Needs
What Are Our Needs?

- Guide Negotiations? Yes, but What Else?
- Teach Boards that Creaming Doesn’t Help
 - Serve Highly Educated People with lots of Work History & Relevant Skills? Target Goes Up
 - Serve Less Educated People with many “Other Characteristics” that May Negatively Impact Employment? Target Goes Down
- Answer the Arguments
 - “We have more Hard to Serve participants”
 - “We’re serving more Hard to Serve Participants Now”
- Reinforce Performance Periods (lag)
 - Make sure their arguments line up with the measurement periods

What Did TWC Do?

- Built Model Tool w/ prior 6 Years & last 4 Qtrs
 - Tool Uses all of DOL’s Elements & Weighting
 - Each DOL Model Element filled out for each Board
 - Demographics / Education
 - Prior Employment / Earnings
 - Other Characteristics Impacting Employment
 - Service Levels
 - Industry Employment
 - Unemployment Rate
- Year by Year Comparison
 - Actual Performance (Numerators & Denominators & Rates)
 - Model’s Predictions
 - Predictions based on Expected Change
 - Casemix & Economic Trends
 - IMPACT OF CHANGE IN EACH FACTOR

Local Negotiation Regression Tool

- Excel Workbook – Nothing too Tricky
- One Tab for each of the 11 Models / Measures
 - Transparent – All Factors, All Predictions, All Formulae
 - Measure / Model Tabs are great for training
- One Board Negotiation Tab
 - Shows all 11 measures
 - Includes TWC’s proposed target
 - Provides space for Board Proposals / Justifications
- TWC’s Proposed Targets
 - Lean more on Predicted Change

Mins & Maxes & Cont. Improvement

- TWC uses Mins & Maxes in target setting as part of Continuous Improvement Strategy
- Maxes
 - Ensure reward for greatness isn’t “Great! Now do More”
 - Provide Space where Strong to focus on where Weak
 - Say Board is 93% on Adult Employed Q2 but 65% on DW; Where should they focus?
 - Law of Diminishing Returns
 - Usually Set at 7th best performance
 - Why 7th? 28 Boards so 7th best is Top Quartile
- Mins
 - Promote continuous improvement by setting a Floor
 - Usually set at 7th lowest performance
 - Why 7th? 28 Boards so 7th worst is Bottom Quartile
- Incentive Awards
Future Plans

- Develop Local Fixed Effects
 - Need to differentiate between Legitimate Differences & Bad Performers
- Correction Factor for Median Earnings
 - Historic Performance based on those Employed in Q2
 - Negotiations based on Total Casemix
 - Not all Exitters Employed in Q2 so Total Casemix less useful in negotiating future outcomes
 - Example
 - Total Exitters = 100 BAs, 20 Grad School, 50 HS grads, 70 dropouts
 - Employed Q2 = 99 BAs, 20 Grad School, 25 HS grads, 20 dropouts
- Incorporation of the Statistical Models into TWC’s Business Insight Generator
 - “Real Time” performance assessments

Adult Employed Q2 Page 1: Overview

<table>
<thead>
<tr>
<th>Program Year</th>
<th>PY12</th>
<th>PY13</th>
<th>PY14</th>
<th>PY15</th>
<th>PY16</th>
<th>PY17</th>
<th>Last 4Qtrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exitters From</td>
<td>2011Q3</td>
<td>2012Q3</td>
<td>2013Q3</td>
<td>2014Q3</td>
<td>2015Q3</td>
<td>2016Q3</td>
<td>2017Q2</td>
</tr>
<tr>
<td>Exitters To</td>
<td>2012Q2</td>
<td>2013Q2</td>
<td>2014Q2</td>
<td>2015Q2</td>
<td>2016Q2</td>
<td>2017Q2</td>
<td>2018Q1</td>
</tr>
<tr>
<td>Actual Numerator</td>
<td>133</td>
<td>122</td>
<td>163</td>
<td>139</td>
<td>145</td>
<td>156</td>
<td>NA</td>
</tr>
<tr>
<td>Actual Denominator</td>
<td>192</td>
<td>163</td>
<td>199</td>
<td>176</td>
<td>179</td>
<td>202</td>
<td>197</td>
</tr>
<tr>
<td>Actual Performance</td>
<td>69.27%</td>
<td>74.85%</td>
<td>81.91%</td>
<td>78.98%</td>
<td>81.01%</td>
<td>77.23%</td>
<td>NA</td>
</tr>
<tr>
<td>DOL Target (Average State)</td>
<td>74.71%</td>
<td>77.06%</td>
<td>81.58%</td>
<td>84.07%</td>
<td>81.59%</td>
<td>77.78%</td>
<td>79.20%</td>
</tr>
<tr>
<td>DOL Prediction (Texas)</td>
<td>72.90%</td>
<td>75.25%</td>
<td>79.78%</td>
<td>82.27%</td>
<td>79.79%</td>
<td>75.98%</td>
<td>77.40%</td>
</tr>
<tr>
<td>Predicted Change from Prior Year</td>
<td>NA</td>
<td>2.35%</td>
<td>4.53%</td>
<td>2.49%</td>
<td>-2.48%</td>
<td>-3.81%</td>
<td>1.42%</td>
</tr>
<tr>
<td>Expected Performance based on Predicted Change</td>
<td>NA</td>
<td>71.62%</td>
<td>79.37%</td>
<td>84.40%</td>
<td>76.50%</td>
<td>77.19%</td>
<td>78.65%</td>
</tr>
<tr>
<td>% of DOL Target</td>
<td>92.72%</td>
<td>97.13%</td>
<td>100.40%</td>
<td>93.94%</td>
<td>99.28%</td>
<td>99.29%</td>
<td>NA</td>
</tr>
<tr>
<td>% of DOL Prediction</td>
<td>95.02%</td>
<td>99.46%</td>
<td>102.67%</td>
<td>96.00%</td>
<td>101.52%</td>
<td>101.65%</td>
<td>NA</td>
</tr>
<tr>
<td>% of Expected Performance</td>
<td>NA</td>
<td>104.51%</td>
<td>103.20%</td>
<td>93.57%</td>
<td>105.90%</td>
<td>100.05%</td>
<td>NA</td>
</tr>
</tbody>
</table>

Adult Employed Q2 Page 1: Casemix

<table>
<thead>
<tr>
<th>Program Year</th>
<th>Model Weight</th>
<th>PY12</th>
<th>PY13</th>
<th>PY14</th>
<th>PY15</th>
<th>PY16</th>
<th>PY17</th>
<th>Last 4Qtrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.075143925</td>
<td>57.29%</td>
<td>60.12%</td>
<td>62.81%</td>
<td>55.11%</td>
<td>69.27%</td>
<td>59.41%</td>
<td>61.93%</td>
</tr>
<tr>
<td>Age 25 to 44</td>
<td>0.02312671</td>
<td>55.73%</td>
<td>59.51%</td>
<td>58.79%</td>
<td>72.16%</td>
<td>65.92%</td>
<td>62.87%</td>
<td>60.41%</td>
</tr>
<tr>
<td>Age 45 to 54</td>
<td>-0.007904579</td>
<td>22.92%</td>
<td>22.09%</td>
<td>23.12%</td>
<td>9.66%</td>
<td>15.08%</td>
<td>12.87%</td>
<td>14.21%</td>
</tr>
<tr>
<td>Age 55 to 59</td>
<td>0.095992322</td>
<td>4.17%</td>
<td>6.75%</td>
<td>8.04%</td>
<td>3.41%</td>
<td>2.79%</td>
<td>7.43%</td>
<td>9.64%</td>
</tr>
<tr>
<td>Age 60+</td>
<td>-0.42006248</td>
<td>1.56%</td>
<td>3.68%</td>
<td>1.01%</td>
<td>1.14%</td>
<td>2.79%</td>
<td>6.44%</td>
<td>6.09%</td>
</tr>
<tr>
<td>Hispanic ethnicity</td>
<td>-0.007959154</td>
<td>27.08%</td>
<td>22.09%</td>
<td>28.14%</td>
<td>34.09%</td>
<td>35.75%</td>
<td>28.22%</td>
<td>21.32%</td>
</tr>
<tr>
<td>Race: Asian (not Hispanic)</td>
<td>0.10932432</td>
<td>4.17%</td>
<td>7.36%</td>
<td>5.53%</td>
<td>6.82%</td>
<td>6.70%</td>
<td>4.16%</td>
<td>9.64%</td>
</tr>
<tr>
<td>Race: Black (not Hispanic)</td>
<td>0.022925286</td>
<td>36.46%</td>
<td>41.72%</td>
<td>34.17%</td>
<td>28.98%</td>
<td>31.84%</td>
<td>35.64%</td>
<td>42.13%</td>
</tr>
<tr>
<td>Race: Hawaiian/Pacific Islander</td>
<td>0.002990903</td>
<td>0.00%</td>
<td>1.84%</td>
<td>1.51%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Race: American Indian or Native Alaskan</td>
<td>0.082735295</td>
<td>2.08%</td>
<td>4.91%</td>
<td>0.50%</td>
<td>3.41%</td>
<td>1.68%</td>
<td>1.49%</td>
<td>4.06%</td>
</tr>
<tr>
<td>Race: More than one</td>
<td>-0.057630242</td>
<td>5.21%</td>
<td>7.36%</td>
<td>6.53%</td>
<td>7.39%</td>
<td>7.26%</td>
<td>4.95%</td>
<td>8.12%</td>
</tr>
</tbody>
</table>

Adult Employed Q2 Page 2: Impact of Change in Casemix

<table>
<thead>
<tr>
<th>Program Year</th>
<th>Model Weight</th>
<th>PY12</th>
<th>PY13</th>
<th>PY14</th>
<th>PY15</th>
<th>PY16</th>
<th>PY17</th>
<th>Last 4Qtrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>0.075143925</td>
<td>NA</td>
<td>0.21%</td>
<td>0.20%</td>
<td>-0.58%</td>
<td>1.06%</td>
<td>-0.74%</td>
<td>0.19%</td>
</tr>
<tr>
<td>Age 25 to 44</td>
<td>0.02312671</td>
<td>NA</td>
<td>0.09%</td>
<td>-0.02%</td>
<td>0.31%</td>
<td>-0.14%</td>
<td>-0.07%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>Age 45 to 54</td>
<td>-0.007904579</td>
<td>NA</td>
<td>0.01%</td>
<td>-0.01%</td>
<td>0.11%</td>
<td>-0.04%</td>
<td>0.02%</td>
<td>-0.01%</td>
</tr>
<tr>
<td>Age 55 to 59</td>
<td>0.095992322</td>
<td>NA</td>
<td>0.25%</td>
<td>0.12%</td>
<td>-0.44%</td>
<td>-0.06%</td>
<td>0.44%</td>
<td>0.21%</td>
</tr>
<tr>
<td>Age 60+</td>
<td>-0.42006248</td>
<td>NA</td>
<td>-0.89%</td>
<td>1.12%</td>
<td>-0.06%</td>
<td>-0.70%</td>
<td>-1.53%</td>
<td>0.14%</td>
</tr>
<tr>
<td>Hispanic ethnicity</td>
<td>-0.007959154</td>
<td>NA</td>
<td>0.04%</td>
<td>-0.05%</td>
<td>-0.05%</td>
<td>-0.01%</td>
<td>0.06%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Race: Asian (not Hispanic)</td>
<td>0.10932432</td>
<td>NA</td>
<td>0.35%</td>
<td>-0.20%</td>
<td>0.14%</td>
<td>-0.01%</td>
<td>-0.25%</td>
<td>0.57%</td>
</tr>
<tr>
<td>Race: Black (not Hispanic)</td>
<td>-0.022925286</td>
<td>NA</td>
<td>-0.12%</td>
<td>0.17%</td>
<td>0.12%</td>
<td>-0.07%</td>
<td>-0.09%</td>
<td>-0.15%</td>
</tr>
<tr>
<td>Race: Hawaiian/Pacific Islander</td>
<td>-0.002990903</td>
<td>NA</td>
<td>-0.01%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>Race: American Indian or Native Alaskan</td>
<td>-0.082735295</td>
<td>NA</td>
<td>-0.23%</td>
<td>0.36%</td>
<td>-0.24%</td>
<td>0.14%</td>
<td>0.02%</td>
<td>-0.21%</td>
</tr>
<tr>
<td>Race: More than one</td>
<td>-0.057630242</td>
<td>NA</td>
<td>-0.12%</td>
<td>0.05%</td>
<td>-0.05%</td>
<td>0.01%</td>
<td>0.13%</td>
<td>-0.18%</td>
</tr>
</tbody>
</table>